Search results for "Commutation relation"
showing 7 items of 7 documents
Weak commutation relations of unbounded operators and applications
2011
Four possible definitions of the commutation relation $[S,T]=\Id$ of two closable unbounded operators $S,T$ are compared. The {\em weak} sense of this commutator is given in terms of the inner product of the Hilbert space $\H$ where the operators act. Some consequences on the existence of eigenvectors of two number-like operators are derived and the partial O*-algebra generated by $S,T$ is studied. Some applications are also considered.
An operator-like description of love affairs
2010
We adopt the so--called \emph{occupation number representation}, originally used in quantum mechanics and recently considered in the description of stock markets, in the analysis of the dynamics of love relations. We start with a simple model, involving two actors (Alice and Bob): in the linear case we obtain periodic dynamics, whereas in the nonlinear regime either periodic or quasiperiodic solutions are found. Then we extend the model to a love triangle involving Alice, Bob and a third actress, Carla. Interesting features appear, and in particular we find analytical conditions for the linear model of love triangle to have periodic or quasiperiodic solutions. Numerical solutions are exhibi…
Pseudobosons, Riesz bases, and coherent states
2010
In a recent paper, Trifonov suggested a possible explicit model of a PT-symmetric system based on a modification of the canonical commutation relation. Although being rather intriguing, in his treatment many mathematical aspects of the model have just been neglected, making most of the results of that paper purely formal. For this reason we are re-considering the same model and we repeat and extend the same construction paying particular attention to all the subtle mathematical points. From our analysis the crucial role of Riesz bases clearly emerges. We also consider coherent states associated to the model.
A Tutorial Approach to the Renormalization Group and the Smooth Feshbach Map
2006
2.1 Relative Bounds on the Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 The Feshbach Map and Pull-Through Formula . . . . . . . . . . . . . . . . . 4 2.3 Elimination of High-Energy Degrees of Freedom . . . . . . . . . . . . . . . . 5 2.4 Normal form of Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Banach Space of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 The Renormalization Map Rρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Construction of pseudo-bosons systems
2010
In a recent paper we have considered an explicit model of a PT-symmetric system based on a modification of the canonical commutation relation. We have introduced the so-called {\em pseudo-bosons}, and the role of Riesz bases in this context has been analyzed in detail. In this paper we consider a general construction of pseudo-bosons based on an explicit {coordinate-representation}, extending what is usually done in ordinary supersymmetric quantum mechanics. We also discuss an example arising from a linear modification of standard creation and annihilation operators, and we analyze its connection with coherent states.
Modified Landau levels, damped harmonic oscillator and two-dimensional pseudo-bosons
2010
In a series of recent papers one of us has analyzed in some details a class of elementary excitations called {\em pseudo-bosons}. They arise from a special deformation of the canonical commutation relation $[a,a^\dagger]=\1$, which is replaced by $[a,b]=\1$, with $b$ not necessarily equal to $a^\dagger$. Here, after a two-dimensional extension of the general framework, we apply the theory to a generalized version of the two-dimensional Hamiltonian describing Landau levels. Moreover, for this system, we discuss coherent states and we deduce a resolution of the identity. We also consider a different class of examples arising from a classical system, i.e. a damped harmonic oscillator.
Pseudo-Bosons, So Far
2011
In the past years several extensions of the canonical commutation relations have been proposed by different people in different contexts and some interesting physics and mathematics have been deduced. Here, we review some recent results on the so-called {\em pseudo-bosons}. They arise from a special deformation of the canonical commutation relation $[a,a^\dagger]=\1$, which is replaced by $[a,b]=\1$, with $b$ not necessarily equal to $a^\dagger$. We start discussing some of their mathematical properties and then we discuss several examples.